返回首页
倚栏轩 > 好文 > 读后感 > 正文

《数学家的眼光》读后感

2024/04/15读后感

倚栏轩整理的《数学家的眼光》读后感(精选14篇),供大家参考,大家一起看看吧。

《数学家的眼光》读后感 篇1

1980年,陈省身教授在北京大学的一次讲学中对三角形内角和定理作出质疑。他说:“人们常说,三角形内角和等于180°。但是,这是不对的!”

三角形的内角和等于180°这是一个熟知的定理,为什么说它不对呢?陈教授对大家的疑问作了精辟的解答说:“三角形内角和为180°”不对,不是说这个事实不对,而是说这种看问题的方法不对。应当说:“三角形外角和是360°”!

这是为什么呢?因为任意n边形外角和都是360°。把眼光盯住外角,就可以把多种情形用一个十分简单的结论概括起来了;用一个与n无关的常数代替了与n有关的公式,找到了—个更一般的`规律。当然也是一个更简单的规律!

由此可见,尽管命题“三角的外角和为360°”和命题“三角的内角和为180°”是等价的,但是在数学家看来,这是不同的!因为在形式上,后者更简单,因此就更美,也就更有价值!事实果真如此,正是这与众不同的眼光,使陈教授抓住了更有价值的内角和,并由此出发,进一步把“多边形内角和等于360°”这个规律推广到闭曲线,推广到空间,进而发展为著名的陈氏类理论,做出了划时代的贡献。

这就是数学家的眼光!在这透彻、犀利的目光中,折射出来的是数学家的价值观和审美观,是数学家的穷追不舍,孜孜以求的探索真理的精神。

《数学家的眼光》读后感 篇2

在数学教学中有时会遇到这样的尴尬,一方面学生努力的学习数学,一方面却是对数学学习缺乏热情,如何培养学生对数学学习的热情,对数学的感情?我一直在思索着这个问题。课堂教学的三维目标,知识目标、能力目标、情感态度价值观目标,尤其是情感态度价值观目标应放在首位。只有学生从内心深处感受到数学的魅力,数学的美,对数学有着一情感互动,才会真正激发学生的学习动力;而要想学生感受到数学的美,只有教师深入挖掘数学的更深层次的内涵,自己先领悟到数学的美,并不断渗透在教学中,才可能使学生逐步认识到数学的美。偶尔读到一本书《数学家的眼光》深有感触。数学教科书,有不少古今中外数学家的故事,在教学中,这些故事往往被老师忽视掉,认为他们不属于考试的范畴,所在讲课时,基本不讲。但是如果能很好的利用好这些资料,让学生了解这些伟人的生平事迹,以及对科学的痴迷,在研究过程中的不懈努力,遭遇嘲讽时的坚持,对学生的数学兴趣的培养和精神熏陶有着重要意义,了解这些科学家的卓越贡献,对学生也是极好的'爱国主义教育。

张景中,是我国著名的数学家,在2005年荣获国家科技进步奖,它写的一部科学书叫《数学家的眼光》,对我们很有启发意义。作为中学数学老师,特别欣赏这本书,一口气读完全书,他给人以启迪,使我更加热爱数学这门学科,从而在教学中能渗透一些数学思想,使我人学生更加热爱数学,热爱生活。《数学家的眼光》是张景中院士献给中学生的礼物。在本书的扉页上有数学大师陈省身写给张景中的信,称其为“承寄大作小册,甚为欣赏”,“该书似当译成英文”。再翻看书的目录,有“温故知新”、 “巧思妙解”、“正反辉映”、“偏题正做”、“青出于蓝”有五个大专题,下面又分为22个小专题,既有“会说话的图形”、“了不起的密率”、 “圈子里的蚂蚁” “椭圆上的蝴蝶”具体的数学问题,又有“相同与不同”、“归纳与演绎”、“精确与误差”、“变化与不变”这样抽象的数学问题。

抚卷深思,深受启发:以前我学数学、教数学,着眼的是数学知识和解题技巧,而张景中着眼的是数学思想和数学思维。数学家的眼光和普通人的眼光就是不同。在平常人看来十分繁难的问题,数学家可能觉得很简单:6只小鸟、6个面包、6张桌子,它们之间有天壤之别,但是对于数学家而言,无非都是一个数字6而已;月饼、铁饼、烧饼,在数学家眼里,无非都是圆,数学家看问题,关心的是数量关系和空间形式,用的是抽象的眼光。这就是学者专家与一般老师的区别。

《数学家的眼光》读后感 篇3

鸡兔同笼,数学家的眼光从这个小学的数学问题又能看出什么呢?鸡兔同笼用方程的解法会很简单,但是它除了方程,还可以用最原始的方法去解。有人可能会笑了:有了简便的方法,还用那么笨的方法干什么?但如果倒过来想,用鸡兔同笼的方来做方程的话,那么很难方程不就好解了吗?

数学家的眼光,能从基本的数学常识中看出复杂的理论,能从不可能中看出可能,能从简单的`问题中看出那题的解法。在数学家的眼中,最最基础的理论也可以衍伸变化出高深的数学问题。数学的领域是无穷广阔的,真正的关键在于自己,若我们用心观察四周的事物,抓住平凡的事实,思考、探索、发掘,会发现数学是耐人寻味且无所不在的。数学家的眼光从洗衣服中都能看见数学的影子,那么我们也一定能够从其它事情中看到数学,久而久之,就会慢慢理解数学,喜欢上数学。这样,数学就不再是让我们绞尽脑汁去思考的难题,而是生活中处处都有的小精灵。

《数学家的眼光》读后感 篇4

我读《数学家的眼光》有很多感受:数学家是向前看的。数学家的眼光,能看出淤泥中的种子的生命力,能透过浓雾看出光明的前方。他们没有因为逻辑上的困难和人们的非议而抛弃新的方法,而是积极地挖掘新方法带来的宝藏,在不稳固的地基上设计并着手建设辉煌的大厦。 《数学家的眼光》讲的不是解某一类数学题的技巧,它告诉读者的是思考数学问题的思路和方法,重在帮助读者全面提高解决数学问题的能力。

数学家的眼光和普通人的眼光不同:在常人看来十分繁难的问题,数学家可能觉得很简单;常人觉得相当简单的问题,数学家可能认为非常复杂。 张景中院士从中学生熟悉的问题入手,通俗生动地介绍了数学家是如何从这些简单的问题中,发现并得出不同凡响的结论的。 《数学家的眼光》讲的不是解某一类数学题的技巧,它告诉读者的是思考数学问题的思路和方法,重在帮助读者全面提高解决数学问题的能力。 《数学家的眼光》被中外专家誉为是一部具有世界先进水平的科普佳作。它也很有启发性,很有教益。书中涉及的数学知识,并没有超出中学数学教学大纲的范围,然而一经用“数学家的眼光”来看,视野宽广了,理解深入了,思路也打开了、活跃了,真可谓别开生面。当代数学泰斗陈省身先生在致张景中院士的信中,对该书表示“甚为欣赏”,并建议“似当译成英文”。陈省身的信影印在书的扉页里。

教中学生用“数学家的眼光”看所学的知识,等于是提倡和教他学会用研究的态度、研究的方法来学习数学。例如书中有一节“定位的奥妙”,讲两个数(整数或小数)相乘,要求在运算之前,先判断出得数的位数和小数点的位置,这几乎是小学数学的`内容;但张院士引领读者完整地走了一遭研究的途程,等于让读者亲身从事了一项微型的研究课题,从中得到的乐趣和收获,是那种仅仅依靠记忆规则,然后应用于具体数据的机械的学习方法,绝对不可比拟的。这一节的末尾,作者总结说:“在弄清定位规律的过程中,要提出问题,试验特例,形成猜想,约定表达方式,建立概念,证明结论,然后进一步提出更一般的问题。麻雀虽小,五脏俱全。问题是小问题,但思考的过程,却正反映了学习和研究数学的一般的方法。”

现在,“创新”的宣言震天价响,还有人鼓吹在中学另外开设“研究性”课程。但一打宣言不如一步行动,如能在教学实践中照张景中院士提倡和演示的方法,脚踏实地地去做,让学生亲历一番现成知识从无到有的创造过程,“创新”自然已在不言之中。否则,“创新”云者终不免是空话,雨过地皮湿,风过地皮干,痕迹都无。

如今多数的中学生,学数学学得太苦,掩埋在满坑满谷抄袭雷同的教辅书中,沉浮于死气沉沉茫无涯际的题目苦海,耗费了大量的时间精力,就学好数学的本真目的来说,实在是得不偿失。聪明可造的学生,也多半止于在考试竞赛中胜出就满足了,依经济不经济的标准,至少是成本和收益太不相称。张景中院士一定是有感于斯,所以不辞辛劳,披荆斩棘,另辟蹊径,写书给中学生看,要把他们引上学数学的正途。张院士既是苦口婆心,又是绣口锦心,他的书,深入浅出,通俗易懂,引人入胜,生动的情景,明晰的理路,在他浅显优美的文字里融为一体。他常常从生活中平凡的事物起讲,跟着他一步一步走走,不知不觉你就登上了不平凡的境界。他屡屡说:“从平凡的事实出发,有时能得到不平凡的结论”,“抓住平凡的事实,思考、探索、发掘,常能开拓出一个广阔的天地”。数学家的创造性思维,往往就是从平凡切入;规范化的数学论文,则总是一开头就莫测高深。张景中院士的文章,可以说细致入微地体贴到了数学思维的精髓,又把它直白地显露出来了。

我敢向青少年朋友们进言,拨出时间来,认真读一读张景中院士为你们写的书,即使你是应对考试解题,也肯定有好处。题目仍须多做,题型仍须熟练,张景中的书会给你们的多做和熟练吹进一口灵气,收到事半功倍之效。考试取分当然是利益所在,不可马虎。英文里“利益”与“兴趣”是同一个词——interest,“学习”与“研究”也是同一个词——study;在张景中的书里体会到用研究的态度来学习是怎么回事,自然就能提高你的学习兴趣,也就符合你考试取分的利益。

《数学家的眼光》读后感 篇5

数学家的眼光和普通人的不同:在普通人眼中十分复杂的问题,在数学家眼中就变得特别简单;普通人觉得相当简单的问题,数学家可能认为非常复杂。作者张景中院士从我们熟悉的问题入手,通俗生动地介绍了数学家是如何从这些简单的问题中,发现并得出不同凡响的结论的。《数学家的眼光》讲的不是解某一类数学题的技巧,它告诉我们的是思考数学问题的思路和方法,让我们做题更加简便的“捷径”。

数学家的眼光可以从“三角形的内角和是180°”这个众人皆知的数学常识中看到“任意n边形外角和都是360°”,看到“蚂蚁在卵形线上爬一圈,角度改变量之和是360°”,这样的眼光,怎能不让人惊叹!

用圆规画线段﹐一般人立即反应:怎么可能呢?若按照常规思考,我们可能回答:“把圆规当铅笔用,再配合直尺,不就可以画线段了吗?”但是在只能用圆规不能用其它工具,画出绝对的直线段的.情况下,可能就需要思考一下了。想一想,若不拘泥在平面上呢?用一个中空的圆罐子,将纸卷成圆柱状置入,将圆心固定在罐子中央,转动圆规,在罐子内侧的纸上画圆,当纸拿出后,线段便完成了!

鸡兔同笼,数学家的眼光从这个小学的数学问题又能看出什么呢?鸡兔同笼用方程的解法会很简单,但是它除了方程,还可以用最原始的方法去解。有人可能会笑了:有了简便的方法,还用那么笨的方法干什么?但如果倒过来想,用鸡兔同笼的方来做方程的话,那么很难方程不就好解了吗?

数学家的眼光,能从基本的数学常识中看出复杂的理论,能从不可能中看出可能,能从简单的问题中看出那题的解法。在数学家的眼中,最最基础的理论也可以衍伸变化出高深的数学问题。数学的领域是无穷广阔的,真正的关键在于自己,若我们用心观察四周的事物,抓住平凡的事实,思考、探索、发掘,会发现数学是耐人寻味且无所不在的。数学家的眼光从洗衣服中都能看见数学的影子,那么我们也一定能够从其它事情中看到数学,久而久之,就会慢慢理解数学,喜欢上数学。这样,数学就不再是让我们绞尽脑汁去思考的难题,而是生活中处处都有的小精灵。

《数学家的眼光》读后感 篇6

无意中翻开《数学家的眼光》,这本书的内容深深地吸引了我,书的作者是张景中,这本书列举了很多我们生活中常见的事实。但是这本书讲的并不是做题的技巧,而是思考数学问题的思路和方法。正如书名所说。

数学家的眼光不同与常人,常人认为问题的难易程度和数学家想的可能完全不同,普普通通的问题在他们的眼中可能是很有必要的。他们的眼光能够穿透问题的表象,直接看到问题的本质。他们不会因人们的非议而停止工作,而是积极地挖掘新方法带来的宝藏。比如:数学家的眼光可以从“三角形内角和是180度”,这个常理中看出“任意n边行外角和是360度”,看到“蚂蚁在卵形线上爬一圈,角度改变量是360度”,这样的眼光怎能不让人惊讶。又比如“定位的奥妙”一节中,张景中院士引领我们完整地走了一边研究的过程,这样亲身研究的得到的乐趣与收获,与那种只靠记忆的学习方法简直是不可比拟的。

在张院士的书中,内容深入浅出、通俗易懂,引人入胜,不是一开头就高深莫测,而是把数学思维的精髓展现出来,细细品位。

《数学家的眼光》读后感 篇7

数学家的眼光和普通人的眼光不同:在常人看来十分繁难的问题,数学家可能觉得很简单;常人觉得相当简单的问题,数学家可能认为非常复杂。张景中院士从中学生熟悉的问题入手,通俗生动地介绍了数学家是如何从这些简单的问题中,发现并得出不同凡响的结论的。

《数学家的眼光》讲的不是解某一类数学题的技巧,它告诉读者的是思考数学问题的思路和方法,重在帮助读者全面提高解决数学问题的能力。《数学家的眼光》被中外专家誉为是一部具有世界先进水平的科普佳作。

序中写道:去吧,那些被课本和考卷异化和扭曲了的数学,忘记那一朵恶之花,我们会迎来新的百花园。宣扬数学和数学家的思想和精神。目的不是教人学数学,而是改变人们对数学和数学家的看法,把数学融入大众文化,回到人们的生活。带着一点儿文艺欣赏的平和,你可以怀着360样心情来享受数学,经历它的趣味和生命,感悟符号后面的情感和人生。从人数来说,数学家在文化人中顶多占一个测度为0的空间。但是,数学的每一点进步都影响着整个文明的根基。“有谁知道,在微积分和路易十四时期的政治的朝代原则之间,在西方油画的空间透视和以铁路、电话、远距离武器制胜空间之间,在对位音乐和信用经济之间,原有深刻一致的关系呢?”……当你发现一个小公式也象一首小诗那么多情的时候,还忍心把它忘记吗?

数学的生活很简单。它没有圆滑的道理,也不为模糊的借口留下一点儿空间。 数学生活也浪漫。艺术家的想象力令人羡慕,而数学家的想象力更多。希尔伯特说过,如果哪个数学家一旦改行作了小说家(真的有),我们不要惊奇——因为人缺乏足够的想象力做数学家,却足够做一个小说家。懂一点数学的伏尔泰也感觉,阿基米德头脑的想象力比荷马的多。

数学是明澈的思维。有数学思维的人多了,那些穿戴科学外衣的骗子的空间就小了。无限的虚幻能在数学找到最踏实的归宿。

数学是奇异的旅行……

数学是纯美的艺术。数学的世界里没有丑陋的位置。在数学家眼里,自己笔下的公式和符号就象希腊神话里的那位塞浦路斯国王,从自己的雕像看到了爱人的生命。在数学里,在那比石头还坚硬的逻辑里,真的藏着数学家们的美的追求,藏着他们的性情和生命。

数学是永不停歇的人生,学数学的感觉就象在爬山,为了寻找新的山峰不停地去攀爬……

数学圈没有起点,也没有终点,不论怎么走,只要走得够远,你总能到某个地方的。

这样充满热情和诗情的语言让我感慨万千:作为一门科学,为人类文明发展立下汗马功劳的数学,理应为所有的人珍重。这样的语言—————反常人对数学的呆板陈述,让我体会了数学严谨的外衣下纯美的执着,字字句句给数学正名。作为一个并不是原本并不热爱数学的数学老师,一个对数学知之甚少的人,我不用掩饰对数学的无知。但我想,至少我拥有对数学崇敬的态度,这样的态度引领我走进数学圈,在这个让我惊叹的世界中,我聚集了内心的每一次讶异和喜悦,有一天,我会让学生通过我这种真实的感受,接纳数学,喜欢数学。

《数学家的眼光》读后感 篇8

鸡兔同笼,数学家的眼光从这个小学的数学问题又能看出什么呢?鸡兔同笼用方程的解法会很简单,但是它除了方程,还可以用最原始的方法去解。有人可能会笑了:有了简便的方法,还用那么笨的方法干什么?但如果倒过来想,用鸡兔同笼的方来做方程的话,那么很难方程不就好解了吗?

数学家的眼光,能从基本的数学常识中看出复杂的理论,能从不可能中看出可能,能从简单的问题中看出那题的解法。在数学家的眼中,最最基础的理论也可以衍伸变化出高深的数学问题。数学的领域是无穷广阔的,真正的关键在于自己,若我们用心观察四周的事物,抓住平凡的事实,思考、探索、发掘,会发现数学是耐人寻味且无所不在的。数学家的眼光从洗衣服中都能看见数学的影子,那么我们也一定能够从其它事情中看到数学,久而久之,就会慢慢理解数学,喜欢上数学。这样,数学就不再是让我们绞尽脑汁去思考的难题,而是生活中处处都有的小精灵。

《数学家的眼光》读后感 篇9

1980年,陈省身教授在北京大学的一次讲学中对三角形内角和定理作出质疑。他说:“人们常说,三角形内角和等于180°。但是,这是不对的!”

三角形的内角和等于180°这是一个熟知的定理,为什么说它不对呢?陈教授对大家的疑问作了精辟的解答说:“三角形内角和为180°”不对,不是说这个事实不对,而是说这种看问题的方法不对.应当说:“三角形外角和是360°”!

这是为什么呢?因为任意n边形外角和都是360°。把眼光盯住外角,就可以把多种情形用一个十分简单的结论概括起来了;用一个与n无关的常数代替了与n有关的公式,找到了—个更一般的规律。当然也是一个更简单的规律!

由此可见,尽管命题“三角的外角和为360°”和命题“三角的内角和为180°”是等价的,但是在数学家看来,这是不同的!因为在形式上,后者更简单,因此就更美,也就更有价值!事实果真如此,正是这与众不同的眼光,使陈教授抓住了更有价值的内角和,并由此出发,进一步把“多边形内角和等于360°”这个规律推广到闭曲线,推广到空间,进而发展为著名的陈氏类理论,做出了划时代的贡献。

这就是数学家的眼光!在这透彻、犀利的目光中,折射出来的是数学家的价值观和审美观,是数学家的穷追不舍,孜孜以求的探索真理的精神。

《数学家的眼光》读后感 篇10

《数学家的眼光》读后感 篇11

数学家的眼光和普通人的不同:在普通人眼中十分复杂的问题,在数学家眼中就变得异常简单;普通人觉得相当简单的问题,数学家可能认为非常复杂。作者张景中院士从我们熟悉的问题入手,通俗生动地介绍了数学家是如何从这些简单的`问题中,发现并得出不同凡响的结论的。

《数学家的眼光》讲的不是解某一类数学题的技巧,它告诉我们的是思考数学问题的思路和方法,让我们做题更加简便的“捷径”。

数学家的眼光可以从“三角形的内角和是180°”这个众人皆知的数学常识中看到“任意n边形外角和都是360°”,看到“蚂蚁在卵形线上爬一圈,角度改变量之和是360°”,这样的眼光,怎能不让人惊叹!

用圆规画线段﹐一般人立即反应:怎么可能呢?若按照常规思考,我们可能回答:“把圆规当铅笔用,再配合直尺,不就可以画线段了吗?”但是在只能用圆规不能用其它工具,画出绝对的直线段的情况下,可能就需要思考一下了。想一想,若不拘泥在平面上呢?用一个中空的圆罐子,将纸卷成圆柱状置入,将圆心固定在罐子中央,转动圆规,在罐子内侧的纸上画圆,当纸拿出后,线段便完成了!

《数学家的眼光》读后感 篇12

在数学教学中有时会遇到这样的尴尬,一方面学生努力的学习数学,一方面却是对数学学习缺乏热情,如何培养学生对数学学习的热情,对数学的感情?我一直在思索着这个问题。课堂教学的三维目标,知识目标、能力目标、情感态度价值观目标,尤其是情感态度价值观目标应放在首位。只有学生从内心深处感受到数学的魅力,数学的美,对数学有着一情感互动,才会真正激发学生的学习动力;而要想学生感受到数学的美,只有教师深入挖掘数学的更深层次的内涵,自己先领悟到数学的美,并不断渗透在教学中,才可能使学生逐步认识到数学的美。偶尔读到一本书《数学家的眼光》深有感触。数学教科书,有不少古今中外数学家的故事,在教学中,这些故事往往被老师忽视掉,认为他们不属于考试的范畴,所在讲课时,基本不讲。但是如果能很好的利用好这些资料,让学生了解这些伟人的生平事迹,以及对科学的痴迷,在研究过程中的不懈努力,遭遇嘲讽时的坚持,对学生的数学兴趣的培养和精神熏陶有着重要意义,了解这些科学家的卓越贡献,对学生也是极好的爱国主义教育。

张景中,是我国著名的数学家,在2005年荣获国家科技进步奖,它写的一部科学书叫《数学家的眼光》,对我们很有启发意义。作为中学数学老师,特别欣赏这本书一口气读完全书,他给人以启迪,使我更加热爱数学这门学科,从而在教学中能渗透一些数学思想,使我人学生更加热爱数学,热爱生活。《数学家的眼光》是张景中院士献给中学生的礼物。在本书的扉页上有数学大师陈省身写给张景中的信,称其为“承寄大作小册,甚为欣赏”,“该书似当译成英文”。再翻看书的目录,有“温故知新”、“巧思妙解”、“正反辉映”、“偏题正做”、“青出于蓝”有五个大专题,下面又分为22个小专题,既有“会说话的图形”、“了不起的密率”、“圈子里的蚂蚁”“椭圆上的蝴蝶”具体的数学问题,又有“相同与不同”、“归纳与演绎”、“精确与误差”、“变化与不变”这样抽象的数学问题。

抚卷深思,深受启发:以前我学数学、教数学,着眼的是数学知识和解题技巧,而张景中着眼的是数学思想和数学思维。数学家的眼光和普通人的眼光就是不同。在平常人看来十分繁难的问题,数学家可能觉得很简单:6只小鸟、6个面包、6张桌子,它们之间有天壤之别,但是对于数学家而言,无非都是一个数字6而已;月饼、铁饼、烧饼,在数学家眼里,无非都是圆,数学家看问题,关心的是数量关系和空间形式,用的是抽象的眼光。这就是学者专家与一般老师的区别。

《数学家的眼光》读后感 篇13

《数学家的眼光》是中国科学院张景中院士写给中学生的一本科普读物,是一本雅俗共赏的科普读物。刚拿到这本书的时候真是爱不释手,一口气读完了,只是迟迟没有写读后感,因为我觉得每读一篇文章都能够感觉到数学的奇妙,数学家眼光的犀利,知识的神奇联系,那种感慨不是一时半会能用语言描述清楚的。这几乎是我所有书籍里最喜欢的一本书了,张景中院士讲到的数学总是深入浅出,出神入化,读他的著作就像在感触大自然的鬼斧神工一样,奇妙无穷!读过一遍仍然想着继续读第二遍,第三遍……一篇篇慢慢品味才好。即便现在要写一写读后感,我也只能就其中的某个知识点说一说自己的感想了。

数学是具有一定的超前性的,但是超前性的东西只有数学家和数学爱好者才会感兴趣。这里不妨就说说生活中的数学吧--洗衣服中的数学。普通人觉得洗衣服哪有什么数学问题呢,直接洗不就行了吗?数学家可不这样想,首先是世界范围内水资源的紧张要求节约用水,其次,我觉得数学家的生活总是很精致,他会考虑怎样才能用最少的水洗出最干净的衣服。这就引出了数学问题,当然数学家是很不喜欢含含糊糊的,首先把问题理清楚,把现实问题转化为纯数学问题,这个过程其实就是建立数学模型的过程了,也就是利用数学思想和知识解决现实问题的过程。

首先要把现实的问题量化。假如现在衣物已经打好了肥皂,揉搓的也已经差不多了,再拧一拧,当然不可能完全拧干。设衣服上还残留含有污物的水1斤,用20斤清水来漂洗,怎样才能漂洗的更干净?书中就每一个方案给出了详细的解答,如果20斤水一次漂洗,最终衣物上的污物残留量是原来的1/21。如果分两次漂洗,情况就比较多了,比如第一次用5斤水漂洗,使污物减少到1/6,再用15斤漂洗,污物减少到1/96,如果两次都是用10斤水漂洗,污物会减少到原来的1/121,。当然可以分别计算出分3次、4次、n次漂洗的干净程度。最后得出一个干净程度关于清洗次数和用水方案的关系式,就会分析的更彻底,更明了。不过是不是洗的次数越多就越干净呢?不完全正确,因为现实生活中的正确标准有很多,而且衣物再怎么漂洗,污物量都不会比原来的2的40次方分之一更少。实际上分三四次漂洗效果就很好了,如果把时间耗费和衣物磨损在考虑进去的话那就是一个新的更复杂的数学模型了。仔细分析,还会得出很多很出乎意料的结论,这里就不一一介绍了。感兴趣的话自已一定要亲自看看原书,体会是完全不一样的,张景中院士一定会让你有种畅游数学海洋的欢快感觉。

看,典雅生活中处处有数学的影子。正所谓真理无处不在啊。看来,精致生活还是需要数学来点缀。

《数学家的眼光》读后感 篇14

1980年,陈省身教授在北京大学的一次讲学中对三角形内角和定理作出质疑。他说:“人们常说,三角形内角和等于180°。但是,这是不对的!”

三角形的内角和等于180°这是一个熟知的定理,为什么说它不对呢?陈教授对大家的疑问作了精辟的解答说:“三角形内角和为180°”不对,不是说这个事实不对,而是说这种看问题的方法不对。应当说:“三角形外角和是360°”!

这是为什么呢?因为任意n边形外角和都是360°。把眼光盯住外角,就可以把多种情形用一个十分简单的结论概括起来了;用一个与n无关的常数代替了与n有关的公式,找到了—个更一般的规律。当然也是一个更简单的规律!

由此可见,尽管命题“三角的外角和为360°”和命题“三角的内角和为180°”是等价的,但是在数学家看来,这是不同的!因为在形式上,后者更简单,因此就更美,也就更有价值!事实果真如此,正是这与众不同的眼光,使陈教授抓住了更有价值的内角和,并由此出发,进一步把“多边形内角和等于360°”这个规律推广到闭曲线,推广到空间,进而发展为著名的陈氏类理论,做出了划时代的贡献。

这就是数学家的眼光!在这透彻、犀利的目光中,折射出来的是数学家的价值观和审美观,是数学家的穷追不舍,孜孜以求的探索真理的精神。